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I. INTRODUCTION 

In a previous paper [l], the longitudinal motion of a particle under periodic ground 

motion perturbation was studied with the assumption of no spread in the synchrotron 

frequency. It was shown that the rf phase mismatch due to sinusoidal ground-wave 

kick on the quadrupoles does not add up so as to throw the particle outside the rf 

bucket, except in the unlikely event that the discrete driving frequency of the pertur- 

bation is locked on exactly at the synchrotron frequency. The rf force is nonlinear, 

which reduces the synchrotron frequency to zero at the boundary of the rf bucket. As 

a result, the response due to a perturbation of any frequency will not kick the particle 

into resonance. However, the nonlinear rf force does introduce resonances of another 

sort: the existence of islands in the longitudinal phase space. The motion of beam 

particles inside these islands will lead to an increase in the longitudinal emittance of 

the particle bunch. 



II. EQUATIONS OF MOTION 

Consider a beam particle in an accelerator ring with its orbit subject to a hori- 

zontal bend 0(t) = isinw,t, where w,/2?r is the driving frequency. This sinusoidal 

bend can arise from the horizontal ground-motion wave powding on the quadrupoles, 

or the power ripple of a current bus on the dipoles. If the lattice has a dispersion 

D at the point of perturbation, the length of the closed orbit C will lexperience a 

fluctuatiou [I] 

AC = Do(t) (2.1) 

The rf phase offset p and energy offset 6 of the beam particle at the (n + 1)th turn 

are given by 

PO,+1 = Pn f p, + 24 ) 

ev . 
“E 
n+* = n 7 - Slll$%+1 , (2.2) 

where h is the rf harmonic, r/ is the phase-slip parameter, E and PC are the energy 

and velocity of the synchronous particle, and c is the velocity of light. The particle 

is assumed in a stationary bucket with rf voltage V. The upper (lower) signs apply 

when the energy of the particle is above (below) tmnsition. Since the synchrotron 

tune at zero amplitude 

is usually much less than unity, the discrete equations of motion can be approximated 

by differential equations: 



dip - = v,~S + avao sin v,B , 
d0 

dc? 

a= 
-us0 sin p , 

where 6 has been resealed 

(2.4) 

(2.5) 

so that the two equations appear to be more symmetric, In the above, the situation 

of above transition has been chosen, v,, = w,,,/ws is the tune of the perturbation, 

and wO/2n is the revolution frequency. The independent variable B denotes the az- 

imuthal angle around the accelerator ring; it advances by 2n for every turn. We have 

introduced a dimensionless parameter 

hDii 
a=- 

u,o 

to denote the amplitude of the driving perturbation. These equations of motion can 

be derived conveniently from the Hamiltonian 

H = ~vaoJ2 + V.G( 1 - cos p) t a6u,o sin v,,,o v-7) 
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III. HAMILTONIAN 

The unperturbed Hamiltonian (with n = 0) is exactly that of a pendulum and 

can be solved exactly. The ground motion or current ripple can then be treated as a 

perturbation. 

In the absence of the perturbation, the unperturbed Hamiltonian can be written 

Ho = &,6* + Q,(I - COST) = 2vsok* , (3.1) 

where 

k = sin $0 , (3.2) 

and ‘ps is the maximum oscillation amplitude of the pendulum. Define a new variable 

2 by 

sin& = ksinz , (3.3) 

where t reaches ?r as the amplitude swings to 9 = spa. 

The action J is defined as 

6 = 2kdm 

(3.4) 

(3.5) 

is obtained from Eq. (3.1). 

Since 
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cos $p = 41 - k* sin* z and ;cos$pdp = kcoszdz , (3.6) 

we get 

,“;?2 ~ dz = i [E(k) - (1 - k*)K(k)] , (3.7) 

where K(k) and E(k) are complete elliptical integrals of the first and second kinds. 

One of the equations of motion is 

die 
de= 

vao6 = 2kvS0 cos z 

After rearranging and changing variable from p to z, we obtain 

dz 

- k2 sin22 
(3.9) 

This means that we have 

sn(v,OO1k) = sin z = k-’ sin F, 

cn(v,r#]k) = cost , (3.10) 

where sn and cn are Jacobian elliptic functions. Then, the transformation becomes 

p = 2sill-‘[ksn(f/,oOlk)] , 

6 = 2k cn(//,nQ]k) , (3.11) 

and the parameter k is given by Eq. (3.2) and is a function of J. 

If Eq. (3.9) is integrated from 0 to the maximum amplitude 9s (or 2 = $r), we 

obtain the pendulum tune V,(J) for finite action J: 

dz 

1 - k’ sin* t 
= K(k) , (3.12) 
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(3.13) 

According to the definition of the action J in Eq. (3.4), the angle variable T/I is given 

by 

4 = v,(J)0 - ; , (3.14) 

where the constant -5 has been chosen for the sake of convenience. In terms of 

action-angle variables, the total Hamiltonian can now be rewritten as 

J 

.7 
H= v,(J)dJ + 2nkr/,o cn(ulk) sin r/,,B , (3.15) 

0 

where ‘1~ = ($1 + :) I/~~/II~(J). 

With the aid of the expansion formula 

(3.16) 

where the “nome” is defined by 

(3.17) 

we can see clearly that the perturbing part of the Hamiltonian is a superposition of 

terms containing 

cos[(n+# f vdl , 

with n = 0, 1, 2, , implying that there are resonances whenever 

(271+1)1/a(J) = v,,, 
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(3.18) 

(3.19) 



These resonances are different from those that occur in the transverse phase space. 

The island structure rotates with frequency w,,/2rr about the center of the longitu- 

dinal phase space. In other words, the island structure only reveals itself when the 

position of the particle is mapped every perturbation period or [u;‘] turns, where 

-’ [u;‘] is the integer closest to v, This is also evident from the equations of motion, 

because the right sides of Eq. (2.4) b ecome “time” independent in the vi’-turn map. 
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IV. FIRST-ORDER RESONANCE 

So far the treatment of the Hamiltonian has been exact. To pursue the problem 

further analytically, however, we need to resort to approximation. We can expand in 

terms of k which is always less than unity except when the particle is at the boundary 

of the bucket. Thus, 

K(k) = ; 1 + (;)’ k2 + 
1 

(!i?)2k4+ (fi)‘k6+...] , 

E(k)=; 
1 
1 _(I)‘:- (;)‘;e (k??)‘;-...] 

We then obtain from Eq. (3.7), 

k= ; I-;+...) 
$( 

and the Hamiltonian now becomes 

H=v,~(J-~)-nv,,[(2J)‘12sin11I-~si,l3~~+...]sin?/,,~B, 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where only the lowest order of &? for every harmonic of $ has been retained. 

Although m ---) -$ when k + 1, the Hamiltonian in Eq. (4.5) is in fact an 

expansion in k’, as is indicated in the expansions of cn and q in Eqs. (3.16) and 

(4.1). Therefore, the higher-order resonances are only important when the oscillation 

amplitude pa becomes large. For this reason, we are going to concentrate on the 

first-order resonance here. The relevant parts of the Hamiltonian are: 

!!+,J)‘/’ cos($ - v,,O) . 
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We go to a frame rotating with frequency w,,,/211 through the canonical transformation 

whose generating function is 

Fz(j, $1 = j(G - hLq 1 (4.7) 

from which we obtain 

J=j and 12=+&e. (4.8) 

The new Hamiltonian 

H 52 
_ = z,J - E - ; cos ,$ , 
~#I 

(4.9) 

becomes “time” independent. For the sake of convenience, we have defined 

I=l-!!E 
u,o 

(4.10) 

to take care of the driving frequency 11,~~ and removed the “hats” from the action-angle 

variables. The fixed points are given by 

J a 
r-s-gyOS~ 1 =o. 

We always choose the convention of $1 = 0 and allow the phase amplitude CJ = v% 

to attain negative values. Then the equation for the fixed points becomes 

In general, there are 3 real solutions; but there is only one when z is small enough. 

The critical poiut is called the bifurcation point and is given by dx/dg = 0, from 

which the bifurcation frequency and amplitude are found to be 
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Xb, = $4#3 and g*, = (4a)“3 . 

To simplify the derivation, we wrmnlize the variables with respect to their bifurcation 

I 
-+i and 9 

---i, (4.14) 
xbf 9bf 

thus scaling away the driving amplitude n, so that the equation for fixed points 

lj3 - 3&j + 2 = 0 , (4.15) 

depends on the variable j: only. When the driving frequency is below bifurcation 

(; > l), the solutions can be readily written as [‘L] 

j<‘(i) = -8:p C”S r d3 3 ’ 
j,(i) = 8i1/‘sill E - 5 d3 ( ) , 

cjc(i) = -&i’/“sin E + 5 ( ) , 
where [ = tan-‘-. Above bifurcation (k < I), the only real solution is 

7 

&(i) = -Lw cash i 
Js 3 ’ 

where t = tanh-‘m. It is not hard to find by expanding the Hamiltonian 

around the fixed points that iG and & are stable fixed points while j, is an unstable 

fixed point. At bifurcation (; = l), Eq. (4.15) becomes 

(tj - l)Z(lj + 2) = 0 , (4.18) 

implying tha.t 6. = -2 while fib and iC merge together to 1. 

The locations of the fixed points together with the separatrices in the longitudinal 

phase space are shown in Fig. 1 when the perturbing frequency is below and right at 

bifurcation. 
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V. SEPARATRICES 

As shown in Fig. l(a), the separatrices cut the phase axis at points 1, 2, and 

the unstable fixed point c. Bunch particles near point 2 will be driven to point 1 

and c, thus increasing the area of the bunch. It is therefore desired to evaluate the 

amplitudes j, and &. 2202 Since the separatrices pass through the unstable fixed 

point, their equations are given by equating the Hamiltonian to its value at point c. 

Again, using the convention of ?I, = 0, i1 and & satisfy 

6.&j2 - i4 - 8i = 6;j: - j,” - 8jc (5.1) 

This is a quartic with only 3 real roots; therefore j, must be a double root. Since the 

unstable fixed point j, satisfies 

4,” - 3;jc + 2 = 0 ) (5.2) 

we can eliminate 5. Then it is simple to factor out (i-&)*, I caving behind a quadratic 

j’ + 2j,4 + 6: - ; = 0 (5.3) 

The final solution is 

ijl = -& - - 
A2 

& = -4, + - &g (5.4) 

If point 2 happens to be at the origin, the bunch will be unstable no matter how 

small it is and will be diverted to point 1 following the sepamtrices. This occurs when 

;e zz 93 and i = 2113 ) (5.5) 
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where Eqs. (5.2) and (5.4) have been used. At this moment, the maximum phase 

excursion is 

j, = 2513 . (5.6) 

The fixed points ij*, jb, and & as well as the separatrix intercepts j1 and 42 are 

plotted in Fig. 2 as functions of the normalized frequency 2. 
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VI. EMITTANCE INCREASE 

Below bifurcation, when the initial normalized phase extent of the bunch & is 

larger than lj, 1, it is clear that there will be negligible increase in the longitudinal 

bunch emittance, although the bunch shape will be distorted. However, when the 

initial normalized phase extent of the bunch pi is less than 1411, there will be an 

increase. The final normalized phase extent 41 is a complicated function of pi and 42, 

and is illustrated in Table I and Fig. 3. 

TABLE I. Final normalized phase extent of the bunch jf when the initial normalized 

phase extent ji < Ijlj and the driving frequency is below bifwmtion. 

(a) 52 > 0 

(b) 4, > 0 

Cc) i2 = 0 

(d) h < 0 

(e) 62 < 0 

jlj 

.4i < ii2 < Ii11 

.$i > 32 kll 

lhl 

4i > lh Ihl 

6i < 1321 < tic 

Above bifurcation, there are no separatrices and therefore 41 cannot be defined. 

The only way to obtain the correct final phase extent of the bunch is to solve for the 

bunch trajectory. This can be accomplished by equating the Hamiltonian to its value 

at *f and solving for the relevant phase extent i. Most of the time, these equations 

cannot be solved analytically. Thus, this method is not much different from numerical 

tracking. This applies to the situation of below bifurcation as well. 

Sometimes the driving frequency has a large spread. From Fig. 3, it is evident 
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that the maximal emittance increase occurs wheu the initial normalized bunch extent 

ii = l&l (42 < 0) and the final normalized bunch exteut 4, = lj,I. Therefore 

(6.2) 

We can define the fractional increase in amplitude as f = (~f-~i)/~i. This definition 

is very extreme, iu the sense that the size of a bunch is measured by its extent rather 

than the 1’111s of its particle distribution. Using Eqs. (6.1) and (6.2), we have 

(6.3) 

Substitutiug back into Eq. (6.2), one obtains 

(6.4) 

which gives the tolerance condition for a certain fractional emittauce increase. For 

example, if the emittance increase has to be less than 50% (or amplitude increase 

f < m - 1 = 0.225), one requires 

Or the driving amplitude must satisfy 

where 9; is the initial amplitude or initial phase extent of the hunch rwovered from 

the nor7nnlized initial amplitude ii. 

Sometimes given a driving amplitude CL and au iuitial hunch phase extent gi, one 

wants to compute the emittance increa,se. We can first construct the ~~ormalized 

initial amplitude ii. From Eq. (5.2) or 
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.3/z 
SC - !I& - *‘I2 - 2 = 0 , (6.7) 

GE/’ can he solved in twms of ji in exactly the same way as givrn by Eq. (4.16). With 

Eq. (6.7), the fraction amplitude increase in Eq. (6.3) can also be written as 

The final result is 

f= 

1 jy ‘w3 cash cos 5 

2& 

$i” 6 

ji ji > < 3 3 

where 

ii < 3 

j; > 3 

(6.9) 

(6.10) 
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VII. GROUND MOTION AT SSC 

In the collision mode at 20 TeV, the synchrotron frequency of the SSC collider 

rings is w,c/27r - 4.5 Hz. However, ground vibrations usually have an appreciable 

intensity up to - 10 Hz. Therefore, ground motion may have an important impact 

on the longitudinal phase space. 

A horizontal displacement of a quadrupole by A leads to an angular bending of the 

beam hy 6 = $, f, being the focal length of the quadrupole. The driving amplitude 

is therefore, according to Eq. (2.6), 

hDA 

a=m. (7.1) 

A quadrupole at the arc has length L! = 5.2 m and field gradient 5’ = 205 T/m. 

The beam rigidity is Bp = 66712.8 T-m, giving f, = 62.5 m. The ring has a circum- 

ferential length of C = 87.12 km, rf harmonic h = 104544, and average dispersion 

(D) = 1.31 m. The designed half bunch length is v”t% = 0.175 rf rad. 

The two sources of ground motion which are of high intensity and sinusoidal 

structure are a quarry blast 9 miles away and a train crossing 20 m above the tunnel. 

There had been measurements [3] at tunnel depth. The horizontal ground motion 

for quarry blast can be summarized by intec~rated displacements over frequency of 

0.143 /I” near 1 Hz and O.l08/~m near 3 Hz. The spectrum at 1 Hz is sharp, but 

that at 3 Hz is rather broad. The quarry blast, being far away, will affect all the 

1600 quadrupoles randomly. The effect of the train crossing cau also be described by 

horizontal intc&ed displacements of 0.055 mn near 3 Hz and 0.058mn near 7 Hz, 

and it affects only about 10 neighboring quadrupoles. Again the spectrum is rather 

broad. 
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For the quarry blast, we take the ground motion near 3 Hz and obtain a 

driving amplitude of n = 9.34 x 10e5. The normalized initial phase extent is 

Gi = 0.175/(4~)‘/~ = 2.43. Substituting into Eq. (6.9) g ives an emittance increase 

of 253%. For the train crossing, we take the ground motion near 7 Hz and obtain 

a driving amplitude of n = 1.19 x 10w5, which gives an emittance increase of 82%. 

On the other hand, according to Eq. (6.6), the tolerance of 50% emittance increase 

is haviug a driving amplitude a < 4.71 x 10-s. 
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VIII. CURRENT RIPPLES 

The power source always has a 60.cycle ripple that will perturb the dipole field. 

On the other hand, the synchrotron frequency fso of a machine may ramp through 

60 Hz. The phase space may therefore he affected. 

Unfortunately, Eqs. (6.6) and (6.9) cannot be used to compute the tolerance and 

fractional emittance increase, the reason being that the synchrotron frequency is in- 

creasing during the passage of 60 Hz. The emittance increase depends very critically 

on how fast the synchrotron frequency is changing and the initial positions of the 

bunch particles. If the synchrotron frequency chauges oery rapidly, the bunch par- 

ticles will not be able to follow the island structure, and therefore the emittance 

increase will be minimal. 

On the other extreme, the synchrotron frequency can change so slowly that the 

beam particles follow the islands exactly. When the synchrotron frequency is below 

the driving frequency, there is no island inside the rf bucket, and there is only one 

stable fixed point (1 which is close to the origin but on the right side. As the syn- 

chrotron frequency increases, this stable fixed point goes more negative and reaches 

4. = -2 at bifurcation frequency. The bunch or some of its particles will be oscil- 

lating around this fixed point and trapped inside this outer island. As synchrotron 

frequency increases further, this fixed point moves farther and farther away from the 

origin of the phase space and reaches the bounda,ry of the rf bucket eventually. So 

the bunch will also reach the boundary of the rf bucket and beam loss will occur. The 

change of island structure will follow the sketches in Fig. 3 in the order of increasing 

i from [(a) to (e)]. A simulation of this situation was performed with a perturbation 

having a driving amplitude of n = 0.01 at a tune of v~,~ = 0.01. The synchrotron 
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tune was varied linearly from v,o = 0.005 to 0.035 at a rate of All.0 = 3.0 x 1O-9 

per turn. Figure 4(a) shows the result of tracking a single particle in the normalized 

longitudinal phase space as a v;’ -map. The particle started out at normalized phase 

4; = 1.5 and zero momentum offset. We see that the particle was trapped in the outer 

islaud and followed it to the boundary of the rf bucket. 

In between these two extremes, the bunch emittance will usually be changed. A 

situation is shown in Fig. 4(b), where everything is the same as Fig. 4(a), with the 

only exception that the synchrotron tuue was ramped much faster at the rate of 

Av,~ = 3.0 x lo-’ per turn. It is obvious that the particle did not follow the outer 

island. It fell into the inner island oscillating around the stable fixed point 6. In fact, 

the fiual normalized phase shrank to j, N 0.5. This does not mean that the bunch 

area decreases. The final normalized phase of a particle may become larger if it starts 

from a different Gi. 

Since vSO cs ,/IqI/E from Eq. (2.3), we have 

Al/,, A? Ay ?At 2 , 

us0 27 2-l -I-- 1 2y 77-y’ ’ (8.1) 

where y is the Lorentz-transformation factor a,nd At is the time for the synchrotron 

tune to change by Av,o. For R.HIC, the synchroton frequency passes through 60 Hz 

wheu 7 = 17.5 and $ = 1.6 s-l. The transition gamma is yt = 23.6. We have 

Av.~/v,~ = -0.25At, implying that fSo changes by 12.5% in i set or in 30 synchrotron 

periods. The circumferential length of the R,HIC ring is G = 3833.84. Thus vSO is 

changing at the rate of 2.45 x lo-” per turn iu the vicinity of faa = GO Hz (or 

v,o = 7.67 x 10-4). 

Let t be the fractional level of the 60 Hz ripples. This leads to a deflection of the 

beam by 
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e = BP = zrt ) BP 
for a0 the dipoles, where b is the peak value of the ripple magnetic field and e is the 

total length of all the dipoles. The rf phase difference per turn is 

A’ 4n’hDt = 3.5~~ Ay=2rrC= 
c 

where the rf harmonic h = 342 and the dispersion at the dipole D - 1 m have been 

used. The driving amplitude at synchrotron frequency fSs = GO Hz is 

The half bunch length at R.HIC is expected to be 0.805 rf rad. Therefore, at ripple 

level t = lo-‘, the driving amplitude is (1 = 7.31 x lo-“ and the initial normalized 

phase extent of the bunch is & = 5.63. A simulation was performed ramping from 

~$0 = 1.0 x 10e4 to 2.5 x 10e3. The results show that particles from different parts 

of the bunch behaved differently. However, the normalized phase extent of the bunch 

increased only negligibly to jr - 5.73 or 4% for the emittance increase. If the ripple 

level becomes c = 10e5, the emittance increase becomes 26%. 

However, when the ripple level is as high as t = 5 X IO-“, the situation is com- 

pletely different. We now have (L = 2.92 x 10-s and initial normalized phase extent 

of the bunch pi = 1.52. Similations show that lxwticles having j; less than 1.49 

were trapped inside the outer island and were driven out to the boundary of the rf 

bucket. Therefore, to avoid appreciable emitta,nce increase the ripple level must be 

well controlled and/or the ramping rate must be ma,de faster. 

Near the end of a ramping cycle, the synchrotron frequency will fall after the rf 

voltage has reached its maximum. There is also a possibility that the synchrotron 
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frequency will fall through a driving frequency. This change is usually slow. We can 

follow the sketches in Fig. 3 in the order of decreasing j. [from (e) to (a)]. At first 

the extent of the separatrices is very big, so that the bunch is completely inside the 

inner island. As the synchrotron frequency decreases (2 decreases), intercept 2 of the 

separatrices shrinks until it cuts into the left side of the bunch. Particles that have 

phases more negative than js will travel close to the separatrix reaching the other 

intercept 1. As the island structure continues to shrink as the synchrotron frequency 

decreases further, particles near intercept 1 will be left outside the island system. 

The increase will therefore be from pi = ]jr] to j, = ]&I, so that Eqs. (6.9) can be 

applied. However, one should remember that the isla.nd system is shrinking all the 

time. For example, particles leaving intercept 2 at some time will reach intercept 1 

at a later time. Therefore, the actual increase should be less than that given by 

Eq. (6.9). As a,n illustration, a simulation having the same driving force of Fig. 4 was 

performed with synchrotron frequency decreasing from 11,s = 0.035 to 0.005 in steps 

of Au,0 = -3.0 x 10-s per turn. Figure 5(a) shows the tracking of a particle starting 

with normalized phase & = 1.5. The final normalized phase was ij, = 3.2, leading 

to a fractional phase increase of 1.1, whereas Eq. (6.9) gives 1.G. The ramping rate 

was next increased to Av,~ = -3.0 x lo-’ per turn. Figure 5(b) shows that the final 

normalized phase was only jr = 1.8. 

In our formuhrtion of the theory in Sec. II, the driving amplitude a is defined in 

Eq. (2.6) with a factor of v,s for the sake of convenience. Since the driving amplitude is 

assumed to be time independent, this rlSo in the perturbative part of the Hamiltonian 

of Eq. (2.7) should not be va,ried even when the synchrotron frequency is changing. 

Therefore, strictly speaking, our analysis cannot be applied here. However, we learn 
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from our simulations that the illustrations shown in Figs. 4 a,nd 5 will not be changed 

by very much even if this precaution has been taken. Also the discussion in Sec. II 

is inside a stationary bucket. During the ramping of an accelerator, the bucket will 

be r~oving and smaller. However, our tracking results still hold qualitatively. For 

example, if the particle is trapped inside the outer island and moves with it to the 

boundary of the rf bucket as indicated in Fig. 4(a), this should happen in a moving 

bucket as well. 
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IX. CONCLUSION 

We studied the particle motion in the longitudinal phase under the influence of the 

nonlinear rf force and a sinusoidal perturbation that ha a driving frequency close to 

the synchrotron frequency. The phase space is divided up into resonant islands. The 

most important one is the first-order resonance, which had been analysed in detail. 

Beam particle motion will follow the trajectories inside the islands, which leads to an 

increase in the longitudinal ernittance. This effect was applied to the ground motion 

perturbation on the quadrupoles of the SSC collider ring, when the frequency of the 

ground wave is close to the synchrotron frequency of the ring. We also discussed the 

effect of the 60 cycle current ripples in the dipoles of an accelerator ring, when the 

synchrotron frequency is ramped through GO Hz. We discovered that the emittance 

increase depends very critically on the rate at which the synchrotron frequency is 

ramped and the initial size of the hunch. Although the more exact effects have to 

come from numerical simulations, however, the analytic treatment given in this paper 

will he found helpful in their interpretation. 
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